
Architecture of the
AMD Quad Core CPUs

Brian Waldecker, Ph.D. | April 13, 2009
Senior Member of Technical Staff
Performance CoE
AMD, Austin

| Architecture of the AMD Quad Core CPUs | April 13, 2009 2

Outline

1.  AMD and Cray Roadmaps

2.  OpteronTM Multi-Core Architectural Overview

3.  NUMA: Multi-socket and Multi-core considerations

4.  Programming Hints and Performance Case Studies

| Architecture of the AMD Quad Core CPUs | April 13, 2009 3

Cray and AMD
Tools for Breakthrough Science

University of Bergen - 50 TF XT4

ARL
• 10,400 core XT5 (Barcelona)
• 1,952 cores XT5 (Barcelona)

CSC Finland – 86.7 TF enroute to 100+ TF

NERSC Franklin – 356 TF

NAVO – 117 TF XT5

ARSC – 31.8 TF XT5

UT et. al. NSF Track II – (big!)

Sandia Red Storm – 284 TF XT4

Many Sites, Multiple Disciplines

| Architecture of the AMD Quad Core CPUs | April 13, 2009 4

A Strong Partnership in HPC:
Past, Present, and Future

Multithreaded

Cray XT4 

Cray XMT 

Cray XT5  
& XT5h 

“Granite” 

Vector

“Baker” 

“Marble” 

“Baker”+ 

CX1 

Scalar

| Architecture of the AMD Quad Core CPUs | April 13, 2009 5

AMD Cross-Generation x86 Server Platforms
Roadmap

Dual
Core Quad-Core

Currently Shipping DDR2 Platforms
DDR2 Memory with AMD-V™ Technology

Maranello
New DDR3 Platform

“Magny-Cours”
“Sao-Paolo”

Longevity – long platform life
Flexibility – power vs. performance choice

“Istanbul”
6 Core

“Shanghai”
Quad-Core

Fiorano
Next-Generation DDR2 Platform with

Improved Virtualization Features

| Architecture of the AMD Quad Core CPUs | April 13, 2009 6

Cray XT5 Blade and Compute Node

H
ig

h
V
el

oc
it
y

A
ir
flo

w

Lo
w

 V
el

oc
it
y

A
ir
flo

w

Lo
w

 V
el

oc
it
y

A
ir
flo

w

Lo
w

 V
el

oc
it
y

A
ir
flo

w

H
ig

h
V
el

oc
it
y

A
ir
flo

w

Cray
SeaStar2+

Interconnect

Memory

Four Compute Nodes per Blade
(2 cpus per node) (Node)

Eight OpteronTM cpus

Fo
ur

 S
ea

st
ar

2+
 c

hi
ps

Memory DIMMS

| Architecture of the AMD Quad Core CPUs | April 13, 2009 7

“Barcelona” to “Shanghai”
What’s New
•  65nm to 45 nm

•  Higher GHz
•  Lower Power

•  2M L3 to 6M L3
•  Lower Latency L3
•  Prefetcher tweaks
•  DDR2-800 support
•  HT3 HyperTransport™

Shanghai
vendor_id : AuthenticAMD
cpu family : 16
model : 4
model name : Quad-Core AMD Opteron(tm) Processor 8387
stepping : 2

Barcelona
vendor_id : AuthenticAMD
cpu family : 16
model : 2
model name : Quad-Core AMD Opteron(tm) Processor 8356
stepping : 3

barcelona

shanghai

(note: not to same scale)

| Architecture of the AMD Quad Core CPUs | April 13, 2009 8

“Barcelona” to “Shanghai”

“Barcelona” Features New With “Shanghai”
65nm Technology

AMD Balanced Smart Cache

HyperTransport™ Technology 1.0 @
up to 8GB/s*

AMD Memory Optimizer
Technology

Drop-in Upgradeability
Investment Protection

45nm Technology
Significantly reduced power &

increased frequency
L3 grows to 6MB (8MB total cache)

2x more expected to improve application
performance by 5-10%

HyperTransport ™ Technology 3.0 @
up to 4.4GTs or 17.6GB/s*

DDR2-800 Memory Support
(Up to 10% greater delivered

memory bandwidth)

Continued Drop-in Upgradeability
Investment Protection

Cache ECC & scrubbing, CPU and
Northbridge watchdogs

L3 cache Index Disable
(Designed to protect data against

L3 cache errors)

Products range from 2.0 to 2.3 GHz
(standard 75W power)

Products range from 2.3 to 2.7 GHz
(standard 75W power)

* bi-directional

| Architecture of the AMD Quad Core CPUs | April 13, 2009 9

Core Micro Architecture
FastPath? Macro-Ops? Micro-Ops?

Micro-Ops

Macro-Ops

X86 Insts.

Macro-Ops tracked ReOrder
Buffer (ROB).
•  72 entries (3 wide x 24 deep)
•  In-order dispatch, retirement

Micro-Ops issue from Sched to
Execution Units
•  “Sched” aka “Reserv. Station”
•  Out-of-order issue
•  FP scheduler shared across units
•  INT Schedulers are “per unit”

Three Decode Categories
(FastPath also called DirectPath)
•  DirectPath Single - best
•  DirectPath Double - better
•  VectorPath (microcode) - good

Avoid having more than 2 or 3
branches per 16B of instructions.

Improved Out-of-Order Load Execution
In-Order Address Generation (per AGU)
Store-to-Load Forwarding Support

Reference : Software Optimization Guide for
AMD Family 10h Processors,
Pub. #40546, Rev. 3.10 Feb 2009

Notes / Considerations

| Architecture of the AMD Quad Core CPUs | April 13, 2009 10

Relating Micro-Architecture to Programming

Micro-
architectural
feature

Rely on
Compiler
Magic?

Coerce
Compiler
using flags

Tweak Src
Code to help
Compiler

Examples

Direct / uCode Yes Difficult Difficult •  (not much programmer can do to control)

3 wide super-
scalar design

Yes Difficult Sometimes
Useful

•  Computational Intensity of loops (CrayPAT).
•  Write Vectorizable loops.
•  Independent Ops. Vs Dependency Chains
within code blocks.

Cache Sizes
and
Geometries

Yes Yes Yes •  Cache Blocking of Loops.
•  Array padding.
•  Prefetch and Streaming Store compiler flags

Branch Pred.,
Address Gen.

Yes Difficult Yes •  Unrolling & good branch-to-code density.
•  Help Compiler to Inline (“static” funcs. in C).
•  Hoist common code and order “if”
statements for most common cases.
•  Simple addr. calcs before complicated ones.

Ld/St BW + #
of Func. Units

Yes Yes Yes •  Computational Intensity of loops (CrayPAT)
•  Prefetch and Streaming Store compiler flags

Ld/St BW +
Reg. File Size

Yes Maybe •  Help with idiom recognition and use
algorithmic knowledge. (e.g. grid sweeps)
•  Aliasing hints (via flags and careful ptr use)

Data
Alignment

Yes Yes Yes •  Declares struct elements largest to smallest
•  Buffer padding and pointer adjustment.

| Architecture of the AMD Quad Core CPUs | April 13, 2009 11

TLB Review (Barcelona, Shanghai, Istanbul)
•  Support for 1GB pagesize (4k, 2M, 1G)

•  48 bit physical addresses = 256TB (increase from 40bits on K8)

•  Data TLB

•  L1 Data TLB
•  48 entries, fully associative

•  all 48 entries support any pagesize

•  L2 TLB

•  512 4k entries, and

•  128 2M entries

•  Instruction TLB

•  L1 Instruction TLB

•  fully associative

•  support for 4k or 2M pagesizes

•  L2 Instruction TLB

| Architecture of the AMD Quad Core CPUs | April 13, 2009 12

Data Prefetch: Review of Options

  Hardware prefetching
– DRAM prefetcher

  tracks positive, negative, non-unit strides.
  dedicated buffer (in NB) to hold prefetched data.

  Aggressively use idle DRAM cycles.

– Core prefetchers
  Does hardware prefetching into L1 Dcache.

  Software prefetching instructions
– MOV (prefetch via load / store)
–  prefetcht0, prefetcht1, prefetcht2 (currently all treated the

same)
–  prefetchw = prefetch with intent to modify
–  prefetchnta = prefetch non-temporal (favor for replacement)

| Architecture of the AMD Quad Core CPUs | April 13, 2009 13

Cache Hierarchy

Dedicated L1 cache
–  2 way associativity.

–  8 banks.

–  2 128-bit loads per
cycle.

Dedicated L2 cache

–  16 way associativity.

Shared L3 cache
–  32 way (barcelona),

48 way (shanghai)
associativity.

–  fills from L3 leave
likely shared lines in
L3.

–  sharing aware
replacement policy.

2 to 6 MB

Cache
Control

64KB

512KB

Core 1

Cache
Control

64KB

512KB

Core 2

Cache
Control

64KB

512KB

Core 3

Cache
Control

64KB

512KB

Core 4

| Architecture of the AMD Quad Core CPUs | April 13, 2009 14

Shanghai to Istanbul

•  6 cores (~1.5X flops)
•  Same per core L1 & L2
•  Same shared L3
•  NB & Xbar upgrades (going from 4 to 6 cores)

•  HT Assist – provides 3 probe scenarios
•  No probe needed
•  Directed probe
•  Broadcast probe

• Memory BW and latency improvement
•  Amount depends on platform and configuration

•  Socket Compatibility

| Architecture of the AMD Quad Core CPUs | April 13, 2009 15

Socket Compatibility: 4P/16cores 4P/24cores

| Architecture of the AMD Quad Core CPUs | April 13, 2009 16

HT Assist (Probe Filters)

| Architecture of the AMD Quad Core CPUs | April 13, 2009 17

Multi-Socket System Overview

MCT

ncH
T-H

B

cH
T

XBAR

S
R
I

core0
core1
core2
core3

cHT

MCT

ncH
T-H

B

cH
T

S
R
I

core0
core1
core2
core3

cHT

DRAM DRAM

XBAR

I/O I/O

key:
 cHT = coherent HyperTransport
 ncHT = non-coherent HyperTransport
 XBAR = crossbar switch
 SRI = system request interface (memory access, cache probes, etc.)
 MCT = memory controller
 HB = host bridge (e.g. HT to PCI, SeaStar, etc.)

Inter-socket Probes and Probe Responses travel:
SRI -> XBAR -> cHT -> cHT -> XBAR -> SRI

Probes Requests initiate at home memory node, but
return directly to node making initial memory request.

(Two Socket System)

| Architecture of the AMD Quad Core CPUs | April 13, 2009 18

MOESI Cache Coherency Protocol

Invalid Exclusive

Modified

Owned

Shared

Read Hit
Probe Read Hit

Read Hit
Write Hit Probe Read Hit

Write Hit

Probe Write Hit

Read Miss Exclusive

Pr
ob

e
W

ri
te

 H
it

R
ea

d
M

is
s

S
ha

re
d

Read Hit
Probe Read Hit • “Read” and “Write” are by this core.

• “Probe Read” and “Probe Write” are
reads and writes by others, that must
probe this core’s caches. (May consider Owned as

special case of Shared)

Read Hit

Write Hit

| Architecture of the AMD Quad Core CPUs | April 13, 2009 19

HT (Hyper Transport) Assist Benefits

•  Tracks cacheline usage and eliminates much Probe Traffic
from HT Fabric.

•  Cache misses going to memory often avoid probing entirely.
•  Write upgrade to M state often results in directed probes or
no probes.
•  Read of shared data will often result in a directed probe.
•  Worst case requires broadcast (i.e. pre- HT Assist behavior).

Node 0

Node 2 Node 3

Node 1

Broadcast
Probe
Response

Directed
Probe
Response

(Nodes 2 & 3
connected
but no traffic
in this ex.)

No Probe
Mem. Req.
Mem. Resp.

| Architecture of the AMD Quad Core CPUs | April 13, 2009 20

Cache Coherency – Practical Advice

•  Avoid shared read and shared write data in same cacheline.
•  Avoid gratuitously modifying shared data.

–  Sharing aware L3 helps within a chip, but doesn’t make such
updates free.

–  Minimize false sharing where compiler has to play it safe.

•  Requirement to wait for all probe responses means local
memory and remote cache accesses have similar latencies.

–  Sometimes thinking of just memory is just fine.
–  Let library and compiler writers worry about being uber-clever.

•  Aliasing, Aliasing, Aliasing of addresses. (Help the compiler).
–  If compiler’s unsure about potential aliasing it must play it safe and

generate extra stores and loads, instead of working only with
registers.

| Architecture of the AMD Quad Core CPUs | April 13, 2009 21

Sharing Aware (Partially Inclusive) L3

• Inclusive vs. Exclusive Cache Paradigms
– Inclusive: L3 contains L2 contains L1 (i.e. supersets).
– Exclusive: L3, L2, and L1 are disjoint sets.

•  L3 tracks core that last touched cacheline.
– Read request from a different core cause L3 to retain

copy of data in O or S state.
–  i.e. assumes data shared, hence inclusive behavior.

– Read from same core causes L3 to return data and
invalidate cacheline in L3 (not retain a copy).

–  i.e. assumes data not shared, hence exclusive cache
behavior.

– Writes from same core or different cores implemented
according to exclusive cache paradigm.

| Architecture of the AMD Quad Core CPUs | April 13, 2009 22

A Few Programming Hints

1.  Use SSE2 instructions that modify entire 128bit SSE register instead
of preserving one half.

2.  Generally good to prefetch 6 to 8 cachelines ahead
  Latency-Bandwidth product estimates how much data must be “in-

flight”
–  1P, DDR2-800 ~= 53ns * 10GB/s = 530 Bytes = ~8 cache lines in flight.

–  2P, DDR2-667 ~= 81ns * 17GB/s = 1377 Bytes = ~21 cache lines in flight (combined
across both Northbridges).

–  2P, DDR2-800 ~= 81ns * 20GB/s = 1620 Bytes = ~25 cache lines in flight (combined
across both Northbridges).

3.  Try to have 100 cycles of computation in loop body between
successive prefetches

4.  Avoid issuing multiple software prefetches to the same cacheline
5.  Unroll loops enough times so each iteration works on 1 or more

cachelines of data.
note: neither hw or sw prefetches will be allowed to generate page
faults, but a TLB miss on a prefetch can initiate a TLB fill.

| Architecture of the AMD Quad Core CPUs | April 13, 2009 23

Programming Hints con’t.

Data Less than ½
L1 size

Less than ½ L2 size or of unknown
size

Greater than
½ L2 size

Reused Not Reused

Read only prefetch or
prefetchnta

prefetch prefetchnta prefetchnta

Sequential read only hwprefetcher
+ prefetch

hwprefetcher +
prefetch

prefetchnta prefetchnta

Read-write prefetchw prefetchw prefetchnta prefetchnta

Sequential read-
write

prefetchw prefetchw prefetchnta prefetchnta

Write only prefetchw prefetchw movnt movnt

Sequential write only hwprefetcher
+ prefetchw

hwprefetcher +
prefetchw

movnt movnt

Which Prefetch to use ?

| Architecture of the AMD Quad Core CPUs | April 13, 2009 24

Performance Case Study 1

Opteron™ (Barcelona) System

Tyan Thunder n425QE (S4985E)
Four Opteron 8356 CPUs @ 2.3GHz
16 x 2GB DDR2-667
SLES10 SP1 X86_64
PathScale Compiler Suite 3.1

SPEC OMPL2001 (SPEC-HPG OpenMP benchmark)
313.swim_l (shallow water ocean model)

| Architecture of the AMD Quad Core CPUs | April 13, 2009 25

Performance Case Study 1 (slide 2)

Three sets of compiler* flags used:

“Ofast” (aka “generally a good set of optimizations”)
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -mcmodel=medium

“Ofast_simd0” (aka “don’t vectorize”)
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -LNO:simd=0 -mcmodel=medium

“Ofast_movnti2500” (aka “don’t use streaming stores”)
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -CG:movnti=2500 -mcmodel=medium

Flags Runtime in secs. (mins.)
Ofast 7194s (120m)
Ofast_simd0 1736s (29m)
Ofast_movnti2500 1785s (30m)

What’s going on? -
Too much of a good thing? (streaming stores or vectorization)

| Architecture of the AMD Quad Core CPUs | April 13, 2009 26

Performance Case Study 1 (slide 3)

Ofast
samples % symbol name
598797565 79.1052 __ompdo_calc3_1
 90931114 12.0126 __ompregion_calc2_1
 48912887 6.4617 __ompregion_calc1_1
 17952271 2.3716 __ompdo_MAIN__1
 153331 0.0203 __ompdo_calc3z_1

Ofast_simd0
samples % symbol name
68233066 34.4688 __ompregion_calc2_1
61859772 31.2492 __ompdo_calc3_1
48931003 24.7181 __ompregion_calc1_1
18617176 9.4047 __ompdo_MAIN__1
 132326 0.0668 __ompdo_calc3_2

Ofast_movnti2500
samples % symbol name
68314854 34.4881 __ompregion_calc2_1
61749164 31.1735 __ompdo_calc3_1
48932509 24.7031 __ompregion_calc1_1
18770527 9.4761 __ompdo_MAIN__1
 132286 0.0668 __ompdo_calc3_2

Problem Size:
7701 x 7701 grid, REAL*8
452MB per array (5.8GB total)

Program Structure:
10 NCYCLE=NCYCLE+1
 Calc1 (writes 4 arrays)
 ...
 Calc2 (writes 3 arrays)
 ...
 Calc3 (writes 6 arrays)
 ...
GOTO 10

Oprofile: Counted CPU_CLK_UNHALTED events (Cycles outside of halt state)

Profiling shows

| Architecture of the AMD Quad Core CPUs | April 13, 2009 27

Performance Case Study 1 (slide 4)

* Pathscale ™ Compiler Suite, Version 3.1, SLES10 SP1

Performance Counters

Ofast = default
Ofast_simd0 = -LNO:simd=0
Ofast_movnti2500 = -CG:movnti=2500

| Architecture of the AMD Quad Core CPUs | April 13, 2009 28

Performance Case Study 2
Store-to-Load Forwarding

loop1:
 mov rbx, [rdx]
 add rax, rbx
 mov [rdx], rax
 mov rbx, [rdx+10h]
 add rax, rbx
 mov [rdx+10h], rax
 mov rbx, [rdx+20h]
 add rax, rbx
 mov [rdx+20h], rax
 mov rbx, [rdx+30h]
 add rax, rbx
 mov [rdx+30h], rax
 mov rbx, [rdx+40h]
 add rax, rbx
 mov [rdx+40h], rax
 mov rbx, [rdx+50h]
 add rax, rbx
 mov [rdx+50h], rax
 mov rbx, [rdx+60h]
 add rax, rbx
 mov [rdx+60h], rax
 mov rbx, [rdx+70h]
 add rax, rbx
 mov [rdx+70h], rax
 mov rbx, [rdx+80h]
 add rax, rbx
 mov [rdx+80h], rax
 mov rbx, [rdx+90h]
 add rax, rbx
 mov [rdx+90h], rax
 dec rcx
 jnz loop1

loop1:
 add [rdx], rax
 add [rdx+10h], rax
 add [rdx+20h], rax
 add [rdx+30h], rax
 add [rdx+40h], rax
 add [rdx+50h], rax
 add [rdx+60h], rax
 add [rdx+70h], rax
 add [rdx+80h], rax
 add [rdx+90h], rax
 dec rcx
 jnz loop1

For (i=0; i < N; i++) {
 Data[i % 10] = Data[i % 10] + cvalue;
}

Assembly Format:
Op dst, src

load store

Store-to-Load forwarding (STLF) feature:
•  Load in iteration i may get data forwarded
from earlier Store (iteration i-1) if still in
Load/Store queue awaiting cache write.
•  Without STLF, Store must write cache
then load reads cache.

C
od

eG
en

1

C
od

eG
en

2 Although this testcase is a
bit artificial, it has
similarities to code that
might be found for
circular buffers, CRC, etc.

| Architecture of the AMD Quad Core CPUs | April 13, 2009 29

Performance Case Study 2 (slide 2)
Store-to-Load Forwarding

 mov rbx, [rdx]
 add rax, rbx
 mov [rdx], rax

 add [rdx], rax

3 x86 instructions,
3 macro-ops,
3+ micro-ops ,
2 separate LSQ entries

1 x86 instruction
1 macro-op,
3+ micro-ops,
1 LSQ entry

CodeGen1 CodeGen2
2nd Gen.
OpteronTM

~12 cycles/
iteration

~22 cycles/
iteration

3rd Gen.
OpteronTM

~12 cycles/
iteration

~12 cycles/
iteration

CodeGen1 CodeGen2

(Remember, 1 loop iteration
contains 10 such snippets)

So what’s going on ?!
Turns out we stumbled
on a pathological corner
case for the 2nd Gen.
OpteronTM !

| Architecture of the AMD Quad Core CPUs | April 13, 2009 30

Performance Case Study 2 (slide 3)
Store-to-Load Forwarding (STLF)

LdSt Queue (LS2) of depth N
STLF supported from bottom M entries (M<N)

 mov rbx, [rdx]
 add rax, rbx
 mov [rdx], rax add [rdx], rax

CodeGen1 (1)
CodeGen2 (2)

  Separate load and store
causes 2 LSQ entries to
be used.
  Fewer loop iterations
can accumulate in LSQ
due to lower density.
  Lessens chance that
load from iteration i and
corresponding store from
iteration i-1 will both
reside in top N-M entries.
  Most STLF opportunities
will succeed because
store will be in bottom M
entries and can forward
data.

  Combined ld-op-st
instruction means 1 LSQ
entry will be used.
  More loop iterations can
accumulate in LSQ due to
higher density.
  Increases chance that
there will be a load op for
iteration i that wants store
forwarding of data from
corresponding instruction
in iteration i-1 AND both
reside in top N-M entries.
  Since STLF not allowed
there, this can cause more
pipeline bubbles. 1 (oldest)

N (youngest)

(M Stores can be
forwarded to
younger loads)

(N-M Stores can’t
be forwarded to
younger loads)

LS2 Queue

Load / Store u-ops

M

Store (iter i-1)

Load (iter i)

STLF

Store (iter i-1)

STLF
OK

(2)

(1)

| Architecture of the AMD Quad Core CPUs | April 13, 2009 31

Performance Case Study 2 (slide 4)
Store-to-Load Forwarding (STLF)
•  How would I figure something like this out ?

• not easily, intuition, unusual performance delta between platforms

• CrayPAT – unexpected differences in IPC, LS2 full, canceled STLF ops.

•  What can I do about it ?
• Manually try different unroll factors

• PGI

•  -Munroll, -Munroll=c:x, -Munroll=n:x, -Munroll=m:x (“x” = unroll factor)

• Pathscale

• -CG:load_exe=N (threshold for subsuming loads into arithmetics - produces CodeGen2).

• -LNO:full_unroll_size, etc.

Bottom Line: No one size fits all approach, but knowing what’s in your
toolbox, allows you to try different things based on intuition, experience.

“Proof of the pudding is in the eating”
Often (intelligently) trying things is

quickest.

| Architecture of the AMD Quad Core CPUs | April 13, 2009 32

Summary
1.  Don’t sweat all the details – there is more here than an application

writer needs (or should) try to optimize for.

2.  High level understanding can help avoid some of the worst case
performance pitfalls.

3.  Your goal should be to make the compiler and hardware’s jobs
easier where feasible.
  Compiler’s negative feedback is useful.

  Performance counters can help.

4.  Some Hardware Features to Keep in Mind:
  Improvements to Core IPC, TLB, HW prefetch, FPU, and memory BW and latency.

  Flop rich programming environment.

  Shared L3 (data sharing aware).

  Be aware of NUMA when coding (have two-socket compute nodes).

  Many cores and caches requires some awareness regarding cachelines and
coherency.

| Architecture of the AMD Quad Core CPUs | April 13, 2009 33

Questions

Cray-1 (160 - 250 MFlops)

Cray XT5 Jaguar (1.3 PFlops = 5.2 million X Cray-1)

| Architecture of the AMD Quad Core CPUs | April 13, 2009 34

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices,
Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for
identification purposes only and may be trademarks of their respective owners.

©2008 Advanced Micro Devices, Inc. All rights reserved.

